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Abstract

Free radicals play important roles in many physiological and pathological pathways in biological systems. These free radicals can
be detected and quantified by their EPR spectra. The measured EPR spectra are often mixtures of pure spectra of several different
free radicals and other chemicals. Blind source separation can be applied to estimate the pure spectra of interested free radicals.
However, since the pure EPR spectra are often not independent of each other, the approach based on independent component anal-
ysis (ICA) cannot accurately extract the required spectra. In this paper, a novel sparse component analysis method for blind source
separation, which exploits the sparsity of the EPR spectra, is presented to reliably extract the pure source spectra from their mixtures
with high accuracy. This method has been applied to the analysis of EPR spectra of superoxide, hydroxyl, and nitric oxide free rad-
icals, for both simulated data and real world ex vivo experiment. Compared to the traditional self-modeling method and our pre-
vious ICA-based blind source separation method, the proposed sparse component analysis approach gives much better results and
can give perfect separation for mixtures of superoxide spectrum and hydroxyl spectrum in the ideal noise-free case. This method can
also be used in other similar applications of quantitative spectroscopy analysis.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In biological systems, free radicals play important
roles in many physiological and pathological pathways.
Such free radicals can be routinely measured by the
technique of electron paramagnetic resonance (EPR)
spectroscopy. Spin trap agents are usually used for
detecting those highly reactive organic free radicals,
since such agents help to extend the half-life of those
free radicals [1]. However, spin trap agents are not so
ideally species-specific. For example, the widely used
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agent 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-
oxide (DEPMPO) for superoxide O2

�� radical will also
simultaneously trap hydroxyl radical (OH�) in in vivo
systems [2]. Consequently, the measured EPR spectrum
using the spin trap agent DEPMPO will be a linear
superposition of the spectra of DEPMPO adducts of
the above two free radicals if both radicals are present,
a situation common in biological systems. The super-
imposed spectra can be called multi-component mix-
tures, while each individual spectrum that constitutes
the mixtures is called a component spectrum. Such
superposition leads to difficulty in quantitative analysis
of the EPR spectra, especially when the component
spectra are overlapping, as is the case where superoxide
and hydroxyl are co-existing.
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There has been much interest in numerically decom-
posing multi-component mixtures of EPR spectra into
pure component spectra. Traditional approach for
determining the component spectra tries to match the
mixtures manually to the spectra of all known and pos-
sible pure components [3]. This approach is very ineffec-
tive and depends highly on the contents of the
component spectra. Svistunenko et al. [4] proposed a
simplified method that utilizes a set of mixtures of vary-
ing compositions, but this method still requires a priori
information concerning the shapes of the component
spectra. Since the component spectra may be very diffi-
cult to acquire a priori, generic species-free methods not
relying on a priori knowledge of the shapes of the pure
component spectra will be of great advantage. Gener-
ally, as in [4], multiple mixtures with distinct composi-
tions are required for such methods. A representative
approach was proposed in [5] where a self-modeling pro-
cedure and a procedure utilizing the symmetric property
of the spectra were applied with preprocessing using the
principle component analysis (PCA). PCA has been
widely used in analytical spectroscopy, and it can
decompose the mixtures into pure components when
the peaks in each component are well separated from
those of every others [6]. However, the component spec-
tra must be linear combinations of the principle compo-
nents if they have overlapping peaks, and in this case
post-processing is required to get the pure spectra, as
used in [5]. The self-modeling technique used in [5] was
originally proposed in [7] and recently reviewed in [8].
Another post-processing approach used in [6] assumes
that each component spectrum has only one peak.

The above species-free methods require that the pure
spectra are either single peak or nearly symmetric or not
contaminated by heavy noise. However, organic free
radicals always have more complicated EPR spectra,
and their concentrations in biological systems are always
very low so that the spectra are quite noisy. In fact, the
above methods do not work well in our experiments for
EPR spectra analysis of superoxide and hydroxyl
radicals.

The problem that the species-free methods aim to
solve is exactly the blind source separation (BSS) prob-
lem familiar to the signal processing community. In [9]
we proposed an independent component analysis
(ICA)-based BSS approach and obtained promising re-
sults. A recent review for BSS and ICA can be found
in [10]. Assuming the sources, i.e., the component spec-
tra in this study, to be statistically non-Gaussian and
independent, the BSS problem can be solved by ICA,
which is based on higher order statistics. Representative
ICA methods are JADE [11], InfoMax [12], and Fas-
tICA [13]. Alternatively, second order statistics-based
methods can also be applied to solve the BSS problem
if the sources are statistically uncorrelated over a set
of time lags [14,15]. BSS has also been applied for MR
spectra analysis, using either ICA [16–20] or second or-
der statistics-based approach [21]. However, since in fact
the component EPR spectra are neither completely inde-
pendent nor completely uncorrelated, the decomposition
result of the BSS approach to mixed EPR spectra anal-
ysis is not perfect even when the measured spectra are
very clean, as shown in our previous studies in [9].

In this study, we propose a novel BSS method to
decompose perfectly multi-component EPR spectra
mixtures into pure component spectra that employs
the sparsity of the component spectra. We will demon-
strate its application to the experimental EPR spectral
analysis of spin trapping EPR of superoxide and hydro-
xyl radicals in biological systems. Section 2 presents the
theory of the novel BSS method. Details of the experi-
ments are included in Section 3. In Section 4, we test
the method on simulated free radical EPR spectra first
and then on the experimental data. Discussions and con-
clusions are presented in Section 5.
2. Theory

2.1. Blind source separation for EPR spectra analysis

As formulated in [9], blind source separation can be
used to extract EPR spectra from their mixtures. The
blind source separation problem is to extract a number
of K unknown source signals x1 (n),x2 (n), . . . ,xK (n),
n = 1,2, . . . ,N, which in our problem are the K un-
known pure EPR spectra each sampled to N data points,
from a number of M (M P K) known linear mixtures,
which are the measured EPR spectra modeled as

yðnÞ,
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y2ðnÞ
..
.

yMðnÞ

2
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where the unknown M by K matrix A is called the mix-
ing matrix. Our task is to find out a separating matrix B

so that z (n) = By (n) is an estimate of the source vector
x (n), with preserved waveforms but possibly undeter-
mined scales and orders. With the assumption of inde-
pendence or uncorrelation (at a set of different lags)
among the source signals, there are many well-known
methods to solve this blind source separation problem,
as described in Section 1. However, such assumption
cannot be satisfied well for practical cases of EPR spec-
tra analysis, and consequently the results are not good
enough. With the observation that EPR spectra are gen-
erally sparse, here we develop a sparse component anal-
ysis approach to the blind source separation problem for
EPR spectra analysis.



Fig. 1. (A and B) Ideal examples of sparse signal with identity on the
x-axis and magnitude on the y-axis (arbitrarily scaled); (C and D)
mixtures of the sparse signals in (A and B) with signal amplitude ratios
of A/B equal to 1/1 in (C) and 1/1.5 in (D), respectively. The mixtures
are less sparse than the source signals, as shown by their sparsity
values.
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2.2. Sparse signal and the definition of sparsity

A signal is called sparse if it has some peaks and rel-
atively flat area in between the peaks. For an arbitrary
signal or data sequence x = [x (1) x (2) � � � x (N)], its L0

norm ixi0, which is equal to the number of nonzero sam-
ples in x, can be a good indicator of the degree of spar-
sity. However, the function ixi0 is very sensitive to noise:
even a tiny bit of noise would make all the samples non-
zero, while noise cannot be avoided in practice. There-
fore, we consider proposing a robust definition of
sparsity for noisy signals. Since a very sparse signal
has its value and hence its energy concentrated in some
narrow segments of the signal, we define its sparsity as

SðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
n¼1x

2ðnÞ
q
1=N

PN
n¼1jxðnÞj

¼
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1x
2ðnÞ

q
PN

n¼1jxðnÞj
¼

ffiffiffiffi
N

p kxk2
kxk1

;

ð2Þ
where ixi2 and ixi1 represent L2 norm and L1 norm of x,
respectively.

The sparsity defined by Eq. (2) is a ratio of L2 norm
to L1 norm scaled by

ffiffiffiffi
N

p
. Robustness is brought

through introducing the L2 norm in the definition. The
sparsity will also tend to the ratio of the second order
moment to the first order absolute moment with N tend-
ing to infinity when the signal is modeled as a zero mean
stationary stochastic process. Such property makes the
sparsity function a statistic of a signal. For a stationary
signal, its statistic does not change much with the length
of the signal, as long as the signal is long enough to pro-
vide a stable statistic.

Theorem 1. The sparsity function has the following

properties:

(1) S (x) P 1. Equality holds if and only if x (1) = x (2)
= � � � = x (N).

(2) SðxÞ 6
ffiffiffiffi
N

p
. Equality holds if and only if there is

only one nonzero term in [x (1), . . .,x (N)].
(3) S (cx) = S (x), where c is a constant.
(4) S (ax1 + bx2) 6 max(S (x1),S (x2)) if sgn(abx1 (n)

x2 (n)) P 0 for all n.

The proof is given in Appendix A.1. This theorem
shows that the sparsity function is scale-invariant and
is constrained between 1 and

ffiffiffiffi
N

p
, with 1 for the case

x (1) = x (2) = � � � = x (N) and
ffiffiffiffi
N

p
for the case where

there is only one nonzero term in x (1), . . .,x (N). All
these properties make S (x) a good measure of sparse-
ness of the signal x. This definition regards the signal
with prominent peaks as a sparse signal, the sharper
the peak, the greater the sparsity S (x). It can be shown
that the sparsity of a statistically stationary signal with
normal distribution is

ffiffiffiffiffiffiffiffi
p=2

p
¼ 1.2533, while the sparsity

of a signal with uniform distribution is 2=
ffiffiffi
3

p
¼ 1.1547.

This result agrees with the fact that a normal-distribu-
tion signal is sparser than a uniform-distribution signal.
As shown in Fig. 1, the sparsity of more spiky signals is
even larger. The condition of sgn (abx1 (n)x2 (n)) P 0 can
be approximately satisfied for sparse signals, therefore
Property 4 shows that the sparsity of a linear combina-
tion of two sparse signals is generally less than the spar-
sity of the original sparser signal, as illustrated in Fig. 1.
Conceptually this property can be used to extract sparse
source signals from their linear mixtures, as developed in
the following Section 2.3.

2.3. Sparse component analysis approach to blind source

separation

As described in Section 2.1, each source EPR spec-
trum can be estimated from a linear combination of
the mixtures as

zðnÞ ¼
XM
m¼1

cmymðnÞ ¼
XK
k¼1

akxkðnÞ; ð3Þ

where ym (n) and xk (n) are the mixtures and sources de-
fined in Eq. (1). c1, . . . ,cM are the parameters need to be
determined so that there is only one nonzero among
a1, . . . ,aK, and denote such nonzero to be ai without loss
of generality. Therefore, we have z (n) = aixi (n) with
such a determination.

The following theorem shows that the sparsity func-
tion has some desired properties that can be used to ex-
tract simultaneously all the source signals from their
linear mixtures provided that the source signals are
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sparse and have some degree of non-overlapping among
each other.

Theorem 2. Let X = {n|x1 (n) = 0, x2 (n) „ 0} be the

support where x2 (n) is not overlapping with x1 (n). Then,
J (t) = S (x1 + tx2) has a local maximum at t = 0 if any of

the following conditions is satisfied:

(1) x1 (n)x2 (n) = 0 "n;
(2) E{x1 (n)x2 (n)} = 0 "n, N tends to infinity, and

X „ ;;
(3) jeqj < kx1k2ffiffiffi

N
p Sðx1Þ

P
n2Xjx2ðnÞj, where eq ¼

PN
n¼1x1ðnÞ

x2ðnÞ � Sðx1Þ
PN

n¼1x
0
1ðnÞx2ðnÞ and x01ðnÞ ¼

kx1k2ffiffiffi
N

p sgn

ðx1ðnÞÞ.

The proof is given in Appendix A.2. Conceptually, we
can regard the linear combination of the sources other
than the desired source xi as a single virtual source ~x
such that

P
k 6¼itkxk ¼ t~x, then the general case with mul-

tiple sources is a direct consequence of this theorem for
the simple case with only two sources. This theorem can
be used to extract the source signals from the mixtures
by finding out the local maxima of the sparsity of the
signal z defined in Eq. (3), S (z;c), with respect to
c = (c1 � � � cM). From Eq. (3) we have

Sðz;cÞ ¼ S
XM
m¼1

cmym

 !
¼ S ai xi þ

X
k 6¼i

ak
ai
xk

 ! !

¼ S xi þ
X
k 6¼i

ak
ai
xk

 !
. ð4Þ

According to this theorem, the source signals can be ob-
tained from the local maxima of the function
J (c) = S (z;c). In this paper most examples will be pre-
sented for the simple case with two sources.

Comparing to the blind source separation methods
based on independent component analysis (ICA), which
makes the separated signals as independent of each
other as possible, this approach tries to make the sepa-
rated signals as sparse as possible, thus it can be named
as sparse component analysis. In the literature there are
several methods for independent component analysis
that make use of the sparse property of source signals
[22–25]. However, in our approach the sparsity is solely
responsible for the blind signal separation, and we do
not require that the source signals to be independent
of each other.
2.4. Data processing procedure for EPR spectral analysis

using sparse component analysis

To prepare the EPR spectrum mixtures for further
spectra separation using the proposed sparse component
analysis approach, the following preprocessing steps
should be performed first:
(1) To make the processing simpler and better condi-
tioned, every data value of the spectrum is sub-
tracted from its mean value and normalized to its
standard deviation so that it has zero mean and
unit energy.

(2) To remove the peak shifts which often occur in
EPR signal monitoring, peak alignment is
achieved by evaluating the correlation coefficient
[9,26]. The target spectrum is the spectrum with a
relatively accurate g value according to literatures
[27,28].

A source separation procedure can be obtained by
maximizing the sparsity function in Eq. (4) with respect
to the parameter vector c = (c1 � � � cM). Each local max-
imum gives an estimate of the pure EPR source spec-
trum. The procedure is detailed as follows:

(1) Select a number of M detected mixture signals
denote by y1 (n), y2 (n), . . . ,yM (n), with each of
them composed of the same K components but
in distinct component ratio (according to simula-
tion control or experimental control).

(2) Since the scale of the source signal cannot be deter-
mined, we construct the estimated source as a lin-
ear combination of the mixtures with c1 fixed to
unity:

zðnÞ ¼ y1ðnÞ þ
XM
m¼2

cmymðnÞ. ð5Þ

(3) Compute the sparsity of z using the objective
function:

JðcÞ ¼ Sðz;cÞ ¼
ffiffiffiffi
N

p kzk2
kzk1

. ð6Þ

Notice that with y1 (n),y2 (n), . . . ,yM (n) provided,
this is a function with the unknown variables
c2, . . . ,cM.

(4) Determine c = c1,c2, . . . ,cK so that J (c) achieves
local maxima with respect to c.

(5) Reconstruct the source EPR spectra using Eq. (5)
with the determined c = c1,c2, . . . ,cK, where
ck = (1 ck,2 � � � ck,M), thus we get
zkðnÞ ¼ y1ðnÞ þ

PM
m¼2ck;mymðnÞ for k = 1, . . . ,K.

For M = 2 and K = 2 where we have only two mix-
tures and two sources, Eq. (6) becomes a function of a
single variable, thus its local maxima can be easily found
by a simple search along a single dimension. Therefore
in the following section most results will be given for this
simple case for demonstration purpose. For the case of
M = 3, Eq. (6) becomes a surface in the 3D space, and
such case is still tractable. However, when M > 3, Eq.
(6) becomes a hyper surface in a multi-dimensional
space. In this case, a numerical optimization algorithm
is required to find the local maxima of J (c).
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3. Experimental

3.1. Simulation of some EPR spectra

Some EPR spectra as described in [29] were simulated
using the PEST EPR simulation software WinSim [30].

(1) Spectrum for DMPO/�Ot-Bu: t-butoxyl (47%;
aN = 14.9 G, and aHb = 16.15 G), with parame-
ters: line width, 0.82 G; line shape, 19% Lorentz-
ian, 81% Gaussian (Fig. 1B in [29]).

(2) Spectrum for DMPO/�OCH3: methyl alkoxyl
(36%; aN = 14.45 G, aHb = 10.75 G and
aHc = 1.35 G), with parameters: line width,
0.64 G; line shape, 3% Lorentzian, 97% Gaussian
(Fig. 1C in [29]).

(3) Spectrum for DMPO/�CH3: methyl radical (17%;
aN = 16.25 G, and aHb = 23.35 G), with parame-
ters: line width, 0.87 G; line shape, 65% Lorentz-
ian, 35% Gaussian (Fig. 1D in [29]).

(4) Spectrum for MNP/�CHRR 0 (where R and R 0

denote two different substituent alkyl groups):
�CHRR 0(aN = 15.72 G and aHb = 1.68 G (1H)),
with parameters: line width, 0.82 G; line shape,
3% Lorentzian, 97% Gaussian (Fig. 4G in [29]).

Other two virtual EPR source spectra are simulated
with the first derivative of the Lorentzian absorption
lines. These six EPR source spectra are shown in Fig. 2.
Fig. 2. (A–D) Computer simulated spectra refer to [29]. The hyperfine
values used for each species are described in Experimental. (A)
MNP/�CHRR0, simulation parameters: line width, 0.82 G; line shape,
3% Lorentzian, 97% Gaussian. (B) DMPO/�CH3: line width, 0.87 G;
line shape, 65% Lorentzian, 35% Gaussian. (C) DMPO/�OCH3: line
width, 0.64 G; line shape, 3% Lorentzian, 97% Gaussian. (D)
DMPO/�Ot-Bu: line width, 0.82 G; line shape, 19% Lorentzian, 81%
Gaussian. (E and F) Simulated virtual EPR spectra as linear
superposition of the first derivatives of four Lorentzian lines.
3.2. Generation, spin trapping, and EPR spectroscopy of

superoxide and hydroxyl radicals from chemical systems

The chemical system for O2
�� production is the xan-

thine/xanthine oxidase system [31], comprised with
0.32 mM xanthine, 9 · 10�3 U/ml of xanthine oxidase,
and 20 mM of DEPMPO in 1· PBS solution at pH
7.4. DEPMPO is short for spin trapping agent 5-dieth-
oxyphosphoryl-5-methyl-1-pyrroline N-oxide, pur-
chased from the Oxis International. The reaction
system for OH� production is the Fenton reaction system
[31] consisting of 0.18 mM hydrogen peroxide, 0.09 mM
FeCl2, and 20 mM DEPMPO. The spectra of DEPMPO
spin adduct were recorded with a Bruker EMX EPR
spectrometer. Some representative spectroscopic param-
eters were: center field 3484 G, microwave frequency
9.76 GHz, microwave power 20 mW, modulation fre-
quency 100 KHz, modulation amplitude 2 G, and time
constant 10 ms.

3.3. EPR measurement of nitric oxide radical in rat

kidney

All animal experiments were performed in accor-
dance with the guidelines set by the University of Hong
Kong Committee for Animal Experimentation. Adult
male Sprague–Dawley rats, weighing 220–240 g, were
used. The organic nitric oxide level in rat kidneys was
detected by the spin trapping EPR method. To detect
NO signal in the rats, the spin trap agents diet-
hyldithiocarbamate (DETC, 500 mg/kg i.p.) (Aldrich),
ferrous sulphate (50 mg/kg s.c.), and sodium citrate
(250 mg/kg s.c.) were administrated 30 min before the
sacrifice of the rats. To make NO level different in the
rats, L-NAME (30 mg/kg) was injected by i.p. 30 min
prior to the ischemia in a few rats. After anesthesia with
ketamine (35 mg/kg i.m.) and xylazine (18 mg/kg i.m.),
with a midline incision, the abdomen was opened, and
the left nephrotomy was performed. The kidney tissue
was then immediately cut into small cylinders and put
into an EPR tube stored in liquid nitrogen for EPR
detection. Measurements were performed with an ESP
300E spectrometer (Bruker) operating at X-band,
77 K, microwave frequency about 9.75 GHz, magnetic
field range from 3000 to 3400 G, microwave power
1.0 mW, and modulation amplitude of 5.19 G.
4. Results

4.1. Simulations with software simulated spectra

The satisfaction of the general condition
jeqj < kx1k2ffiffiffi

N
p Sðx1Þ

P
n2Xjx2ðnÞj in Theorem 2 depends on

the waveforms of the two signals x1 and x2, especially
on the correlation and overlapping between the two
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signals, and the sparsity of x1. To evaluate the perfor-
mance of our sparse component analysis approach, a
series of simulations are presented in this section. Pairs
of the simulated spectra in Section 3.1 are used to gen-
erate linear mixtures in Section 4.1.1,4.1.2,4.1.3 with
the model

y1ðnÞ ¼ x1ðnÞ þ x2ðnÞ;
y2ðnÞ ¼ x1ðnÞ þ 1.75x2ðnÞ;

ð7Þ

while in Section 4.1.4 three sources are used with the
model

y1ðnÞ ¼x1ðnÞ þ x2ðnÞ þ x3ðnÞ;
y2ðnÞ ¼x1ðnÞ þ 1.25x2ðnÞ þ 1.5x3ðnÞ; ð8Þ
y3ðnÞ ¼x1ðnÞ þ 1.6x2ðnÞ þ 0.8x3ðnÞ;
where x1 (n), x2 (n), and x3 (n) are the simulated EPR
source spectra, while y1 (n), y2 (n), and y3 (n) are the sim-
ulated mixtures. Eq. (5) is used to reconstruct source
spectra from their mixtures using the sparse component
analysis approach.

4.1.1. Simulations with small correlation between source

spectra
The simulated spectrum for DMPO/�OCH3 is used as

x1 (n), while the simulated spectrum for DMPO/�CH3 is
used as x2 (n). The correlation coefficient between these
two spectra is �0.0472. Before feeding to Eq. (5), each
Fig. 3. Sparsity of z (n) = y1 (n) + cy2 (n) for the simulated examples in Sectio
correlation coefficient as �0.0472, close to zero. Noise at different levels is add
increases, and fails to give the two exact local maxima when SNR decreases t
correlation coefficient as �0.2845. The two local maxima are clearly revealed
with correlation coefficient as 0.3085. Only one false local maximum is presen
and three sources. The plot gives three local maxima, indicating the existenc
mixture is normalized to have zero mean and unit vari-
ance. The sparsity function J (c) = S (z;c) is shown in
Fig. 3A. The function gives two local maxima which
yield the correct source spectra. This result agrees with
the expected, since the correlation coefficient between
the source spectra is close to zero, and thus the condi-
tion (2) in Theorem 2 is approximately satisfied. White
Gaussian noise at various levels is added to the mix-
tures, and we find that the sources can be correctly ex-
tracted with SNR P 30 dB. However, when the noise
level is even larger, our method fails to give correct re-
sults, as shown in Fig. 3A. These simulations show that
our method is sensitive to noise, though it can give cor-
rect estimation in high SNR situations. The same con-
clusion also applies to the independent component
analysis approach, as shown in [9].
4.1.2. Simulations with larger correlation between source

spectra

The simulated spectrum for DMPO/�Ot-Bu is used as
x1 (n), while the simulated spectrum for DMPO/�OCH3

is used as x2 (n). The correlation coefficient between
these two spectra is �0.2845. The sparsity function
J (c) = S (z;c) is shown in Fig. 3B. Though the correla-
tion coefficient between the source spectra is not too
small so that condition (2) in Theorem 2 cannot be sat-
isfied, condition (3) in Theorem can still be satisfied.
n 4.1. (A) The two sources are DMPO/�OCH3 and DMPO/�CH3 with
ed to the mixtures. Results show that the sparsity decreases when noise
o 20 dB. (B) Two sources are DMPO/�Ot-Bu and DMPO/�OCH3, with
. (C) The sources are the two virtual spectra shown in Fig. 2E and F,
t due to heavy overlapping between the two sources. (D) Two mixtures
e of three sources.
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This is because that each of the two spectra contains
prominent peaks non-overlapping with the other, as
shown in Fig. 2. Therefore, as shown in Fig. 3B, there
are two local maxima in the plot, each corresponding
to the estimate of a true EPR source spectrum.

4.1.3. Simulations for an unfavorable case

The two virtual EPR source spectra, simulated with
the first derivative of the Lorentzian lines, are used as
the two source spectra. The correlation coefficient be-
tween these two spectra is 0.3085. The sparsity function
J (c) = S (z;c) is shown in Fig. 3C. The function has only
one local maximum, and this local maximum does not
correspond to any EPR source spectrum. Our method
completely fails in this case. As we can see from Fig. 2,
the two source spectra are completely overlapping. It is
not unexpected for this failure since none of the three
conditions in Theorem 2 can be satisfied, although the
correlation coefficient is close to the case in Section 4.1.2.

4.1.4. Simulations with three source spectra

The simulated spectrum for DMPO/�Ot-Bu is used as
x1 (n), the simulated spectrum for DMPO/�CH3 is used
as x2 (n), and the simulated spectrum for MNP/�CHRR 0

is used as x3 (n). The surface of the sparsity function
J (c2,c3) = S (z;c2,c3) is shown in Fig. 4. Three local max-
ima can be clearly observed, with each yields a correct
EPR source spectrum. When only two mixtures, y1 (n)
and y2 (n), are used in Eq. (5) to extract the source spec-
tra, the sparsity function J (c) = S (z;c) is shown in Fig.
Fig. 4. 2D sparsity function for z (n) = y1 (n) + c2y2 (n) + c3y3 (n) for the cas
Three local maxima are demonstrated.
3D. There are three local maxima found in the plot.
Each maximum corresponds to the ratio of the portions
of one particular source spectrum in the two mixtures
y1 (n) and y2 (n). This means that the mixing model can
be estimated. However, the true source spectra still can-
not be extracted from the two mixtures without further
known information, since the blind source problem is
under determined if the number of sources is greater
than the number of mixtures.

4.2. Simulations with chemically obtained spectra of

superoxide and hydroxyl radical adduct

The spectra of superoxide-DEPMPO and hydroxyl-
DEPMPO measured from chemical system were used
as �source spectra� or reference spectra denoted as
x1 (n) and x2 (n), as shown in Fig. 5. Overlapping com-
plex spectra were simulated by mixing the source spectra
with different mixing coefficients. One group of the sim-
ulated mixture spectra for analysis are denoted as
y1 (n) = x1 (n) + x2 (n) and y2 (n) = x1 (n) + 1.75x2 (n).

4.2.1. The noise free case and the problem of spurious

solution

The noise free mixtures are presented in Fig. 6. For a
range of values of c, the sparsity of z (n) = y1 (n) +
cy2 (n), J (c) = S (z;c), is shown in Fig. 7. There are three
local maxima according to c = �0.975, �0.700, �0.570.
Thus we can reconstruct three sources, as shown in Fig.
8. However, compared to the true sources in Fig. 8, only
e with three mixtures and three sources, as described in Section 4.1.4.



Fig. 6. Simulated mixture spectra from the source spectra of superoxide and hydroxyl radical in Fig. 5. Their proportions are 1.75/1 (A) and 1/1 (B).

Fig. 5. EPR spectra of two typical free radicals, superoxide radical (A) obtained from xanthine/xanthine oxidase chemical system and hydroxyl (B)
measured from Fenton reaction system trapped by DEPMPO. Spectra were recorded on a Bruker EMX EPR spectrometer with a microwave
frequency of 9.76 GHz, microwave power of 20 mW and a modulation amplitude of 2.0 G. Other spectroscopic parameters were: center field 3484 G,
modulation frequency 100 kHz and time constant 10 ms.

Fig. 7. Sparsity of z (n) = y1 (n) + cy2 (n), with local maxima at
c = �0.975,�0.700,�0.570. The maximum at c = �0.700 is a spurious
solution.
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the two sources corresponding to c = �0.570 and
c = �0.975 are the estimate of the true sources, while
the other one corresponding to c = �0.700 is a spurious
solution being a superposition of the two true spectra.

As shown in Section 4.2, for a system with greater
number of sources than mixtures, the function
J (c) = S (z;c) may have more local maxima than the
number of mixtures since the problem is undetermined.
However, for a well determined blind source separation
problem with equal or greater number of mixtures than
sources, the reason why spurious signal may appear in
the estimates is not clearly understood, and it may be
complicatedly related to the waveforms of the source
spectra. Nevertheless, according to Theorem 2, if the
condition is satisfied, the true source spectra should be



Fig. 8. (Solid lines) Separated spectra from mixtures shown in Fig. 6 using sparse component analysis approach, with c = �0.975 (A), c = �0.700
(B), and c = �0.570 (C). (A) is in accordance with the reference spectrum of superoxide (dotted line), (C) is in accordance with the spectrum of
hydroxyl radical (dotted line), while (B) is a spurious estimation.
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included in the estimates. Then our task is to select the
true source spectra from the estimates. There is no gen-
eral way to find out the true solutions, and any a prior
information may help. One such a prior information is
that the source spectra are somewhat independent of
each other, as assumed by the independent component
analysis. With this a prior information, we can compare
the correlation coefficients of each pair of reconstructed
sources, and the least correlated pair of reconstructed
sources can be selected as the true estimates.

For this model system, the two sources corresponding
to c = �0.570 and c = �0.975 are most uncorrelated
with correlation coefficient as 0.3188, compared to the
other two pairs of sources with correlation coefficients
as 0.4266 and 0.7213, respectively, and therefore such
two sources can be selected as the true estimates. As
shown in Fig. 8, these two reconstructed source spectra
resemble almost exactly the corresponding reference
spectra. This is a big improvement when compared to
our previous study, though that result is very good al-
ready [9].

4.2.2. Simulation with noise added (SNR = 10 dB)

Figs. 9A and B show the mixture spectra with noise
added to SNR = 10 dB. As shown in Section 4.1.1,
our method is sensitive to noise. Correct results cannot
be obtained when the SNR is as low as 10 dB. In prac-
tice, we can get multiple measurements for the mixtures
and then apply principle component analysis (PCA) to
get two principle components which are linear mixtures
of the source spectra. The effective SNR will be in-
creased after PCA. In this simulation, multiple measure-
ments are simulated to get a total of 20 measurements.
Then the corresponding two principle components are
used as two virtual mixtures for sparse component anal-
ysis. The sparsity function J (c) = S (z;c) is shown in Fig.
10. It is not surprising that there are three local maxima
in the plot. The methodology for handling spurious
solutions described in Section 4.2.1 is also applied here,
and the two estimates of the true source spectra are
determined, as shown in Figs. 9C and D. Notice that
the peaks of the reconstructed spectra are quite discern-
ible, and closely resemble the corresponding reference
spectra of superoxide–DEPMPO and hydroxyl–
DEPMPO.

4.3. Demonstration with experimental spectra:
overlapping spectra of nitric oxide signal from ex vivo rat

kidneys

Figs. 11A and B demonstrate two EPR spectra de-
tected from the kidneys of a rat that has received an
intraperitoneal injection of DETC 30 min before sacri-
fice, while the rat in Fig. 8A was with an L-NAME pre-
treatment which could inhibit NO release. Because the
NO concentration was low, much of the spin trap DETC
was bound to the copper and a few other sources such as
the reduced iron–sulfur proteins, and formed a complex
background signal superimposing on the NO EPR sig-
nal. Therefore, the EPR signals of DETC2–Fe

2+–NO
present only a doublet line in Figs. 11A and B. The
sparse component analysis approach to blind source sep-
aration is applied to estimate the pure EPR spectra from
the measured mixtures. As shown in Fig. 12, the sparsity
function J (c) = S (z;c) has only two maxima, with the
corresponding estimates shown in Figs. 11C and D. No-
tice that the distinct triplet hyperfine structure of
DETC2–Fe

2+–NO is revealed. The appearance of the



Fig. 9. (A and B) Simulated mixture spectra with random noise added for a SNR of 10 dB; (C and D) Separated signals from mixtures A and B,
using sparse component analysis approach.

Fig. 10. Sparsity of z (n) = y1 (n) + cy2 (n), where y1 (n) and y2 (n) are
the noisy signals shown in Figs. 9A and B. Three local maxima are
revealed again as in Fig. 7 with the middle one being spurious.
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spectrum in Fig. 11C is mainly due to the contribution of
Cu2+–DETC and reduced iron–sulfur proteins, as shown
by the evaluation of their g values.
Since there are three pure EPR spectra contained in
the mixtures, the sparsity function J (c2,c3) = S (z;c2,
c3) associated with three mixtures is exploited. It turns
out that only two local maxima are present in this func-
tion, corresponding to two estimated EPR source
spectra.

Both approaches show that only two source spectra
can be extracted from the mixtures, with one recon-
structed spectrum comprising the spectra of Cu2+–
DETC and iron–sulfur proteins. This result agrees with
our previous result using a independent component
analysis approach [9]. The reason is that the Cu2+–
DETC spectrum and the spectrum of iron–sulfur pro-
teins might appear in close concentration proportions
in all of the kidney samples, and thus a compound of
the two spectra is considered as one virtual source
spectrum by the blind source separation problem. This
is an inherent property of blind source separation
problem.



Fig. 11. (A and B) Real world overlapping EPR spectra trapping in rat kidneys labeled with Fe-DETC. NO concentrations were destined to be
different in the two measurements. Signals were recorded on frozen tissues at 77 K using a Bruker EPR 300E spectrometer. Representative
spectroscopic parameters were: microwave frequency: 9.45 GHz, microwave power 1.0 mW, modulation amplitude 5.19 G. (C and D) Separated
signals by sparse component analysis method, in which C reveals typical triplet hyperfine structure of DETC2–Fe

2+–NO.

Fig. 12. Sparsity of z (n) = y1 (n) + cy2 (n), where y1 (n) and y2 (n) are
the experimental spectra shown in Figs. 11A and B. Two local maxima
are revealed here.
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5. Discussions and conclusions

For comparison we tested the methods of FastICA
[13], PCA combined with self-modeling method [7],
and PCA combined with a method employing the spec-
tral symmetric feature [5], on the digitally mixed spectra
of superoxide and hydroxyl radical as shown in Fig. 6.
Codes of FastICA were obtained from public web sites
[32] and were used with default setting of all parameters
except for the choice of parameter �g� as �tanh.� Codes of
the later two methods were in MATLAB according to
Steinbock et al. [5]. We find that the source spectra are
retrieved to some extent from their mixtures, but there
are mismatching lines between the retrieved spectra
and the reference spectra, and such mismatching is most



Table 1
Correlation coefficients between separated signals and reference signals by different methods

Group Sparse component
analysis approach

FastICA PCA combined with
self-modeling method

PCA combined with
symmetric method

O2
�� 0.9994 0.9612 0.9066 0.8819

OH� 1.0000 0.9975 0.9335 0.9999
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significant when using self-modeling technique. The
experiments demonstrate a high quality of source
separation by our sparse component analysis method
compared to other known techniques.

The degree of similarity between the retrieved spectra
and the reference spectra for each method was measured
by correlation coefficient as shown in Table 1. The cor-
relation coefficient between the source signal x (n) and
the retrieved signal z (n) is defined as

Correlation coefficient ¼ Efðz� EfzgÞðx� EfxgÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efðz� EfzgÞ2ðx� EfxgÞ2g

q ;

ð9Þ

where E is the statistical expectation function. When
using our novel sparse component analysis method,
the average correlation coefficient is 1.0000 for superox-
ide-DEPMPO spectrum, and 0.9994 for hydroxyl-DEP-
MPO spectrum. The consistence between reference and
separated spectra is the highest by our sparse compo-
nent analysis method among all the methods, with Fas-
tICA ranking second. This comparison illustrates that
the introduction of sparse component analysis method
achieves a big improvement in solving BSS problem
for the case of relative sparse signals such as the DEP-
MPO adduct spectra of superoxide and hydroxyl. Com-
paring to traditional self-modeling methods, blind
source separation based on ICA (for example FastICA)
gives much better separation results for mixtures of free
radical EPR spectra, but the retrieved spectra may still
have significant distortion even in the ideal noise-free
case. Such distortion occurs because the sources are
not as perfectly independent as required by the ICA ap-
proach. In fact, the correlation coefficient between
superoxide-DEPMPO spectrum and hydroxyl-DEP-
MPO spectrum is as high as 0.3454, therefore the two
spectra are far from independent. In contrast, though
the correlation between source spectra violates the first
two conditions in Theorem 2, condition (3) can still be
satisfied since there is a high degree of non-overlapping
between the two EPR spectra. Therefore, the true source
spectra can still be retrieved perfectly by our sparse com-
ponent analysis approach in the noise-free case.

The ideal requirements for blind source separation
using sparse component analysis are that the sources
are relatively sparse and have no overlapping nonzero
data samples. This is the condition (1) in Theorem 2.
The later requirement also assumes inherently that the
sources are uncorrelated. In practical applications such
requirements are most probably neither achievable nor
necessary. Since according to the conditions (2) and
(3) in Theorem 2, the degree of overlapping is the most
important factor which determines whether the sparse
component analysis approach for blind source separa-
tion can be applied effectively. The greater the sparsity
of the source signals and the less the correlation among
the sources, the greater the probability that the nonzero
data samples of the sources are not overlapped. As
shown in Fig. 5, the EPR spectra of superoxide-DEP-
MPO and hydroxyl-DEPMPO are much sparser than
random signals with either uniform or normal distribu-
tion. Therefore, despite the strong correlation between
these two EPR spectra with many overlapping peak
lines, there are still some other peaks not overlapping,
and such non-overlapping peaks make the sparse
component analysis approach applicable. In some prac-
tical cases, only one source signal is sparse, while the
others are not. Nevertheless, the sparse source can be
retrieved by the sparse component analysis approach,
and since one source is obtained, one can continue to
use other signal processing methods to further determine
other sources. Since the sparse component analysis ap-
proach favors sparse signals, a proper way to improve
its efficacy is to preprocess the signals to make them
sparser by making use of some appropriate mathemati-
cal transforms, as adopted in [22–24].
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Appendix A

A.1. Proof of Theorem 1

(1) The Cebysev�s inequality [33] states that if
a = (a1, . . ., aN) and b = (b1, . . . ,bN) are two non-
deceasing (or non-increasing) sequences then
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A.2. Proof of Theorem 2
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Therefore J (t) has a local maximum at t = 0.
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Therefore J (t) has a local maximum at t = 0.
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software package. http://www.cis.hut.fi/projects/ica/fastica.

[33] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New
Inequalities in Analysis, first ed., Kluwer Academic, Dordrecht,
1993.

http://epr.niehs.nih.gov/pest.html
http://epr.niehs.nih.gov/pest.html
http://www.cis.hut.fi/projects/ica/fastica

	Novel sparse component analysis approach to free radical  EPR spectra decomposition
	Introduction
	Theory
	Blind source separation for EPR spectra analysis
	Sparse signal and the definition of sparsity
	Sparse component analysis approach to blind source separation
	Data processing procedure for EPR spectral analysis using sparse component analysis

	Experimental
	Simulation of some EPR spectra
	Generation, spin trapping, and EPR spectroscopy of superoxide and hydroxyl radicals from chemical systems
	EPR measurement of nitric oxide radical in rat kidney

	Results
	Simulations with software simulated spectra
	Simulations with small correlation between source spectra
	Simulations with larger correlation between source spectra
	Simulations for an unfavorable case
	Simulations with three source spectra

	Simulations with chemically obtained spectra of superoxide and hydroxyl radical adduct
	The noise free case and the problem of spurious solution
	Simulation with noise added (SNR = 10dB)

	Demonstration with experimental spectra: overlapping spectra of nitric oxide signal from ex vivo rat kidneys

	Discussions and conclusions
	Acknowledgments
	 nbsp 
	Proof of Theorem 1
	Proof of Theorem 2

	References


